
BayReL: Bayesian Relational Learning for 
Multi-omics Data Integration

Introduction
BayReL is a novel Bayesian relational learning method:

• Integrating high-dimensional multi-omics data
• Taking advantage of a priori known relationships modeled as a graph at 

each corresponding view
• Inferring the relational interactions as a bipartite graph without any pre-

known interactions across views
• Exploiting non-linear and deep transformations of data
• Enabling Bayesian interpretation

Constructing relational multi-partite graph

The distribution of bi-adjacency matrices are defined as follows

Method
Embedding nodes to the latent space

Independently parametrize the distribution over the adjacency matrix of 
each view

Schematic illustration of BayReL
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Figure G.1: Schematic illustration of BayReL.
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[Bach and Jordan, 2005]. Due to explicit uncertainty modeling, PCCA is particularly attractive for
biomedical data of small sample sizes but high-dimensional features [Ghahramani, 2015, Huo et al.,
2020].

Despite the success of the existing CCA methods, their main limitation is that they do not exploit
structural information among features that is available for biological data such as gene-gene and
protein-protein interactions when analyzing multi-omics data. Using available structural information,
one can gain better understanding and obtain more biologically meaningful results. Besides that,
traditional CCA methods focus on aggregated association across data but are often difficult to interpret
and are not very effective for inferring interactions between individual features of different datasets.

The presented work contains three major contributions: 1) We propose a novel Bayesian relation
learning framework, BayReL, that can flexibly incorporate the available graph dependency structure
of each view. 2) It can exploit non-linear transformations and provide probabilistic interpretation
simultaneously. 3) It can infer interactions across different heterogeneous features of input datasets,
which is critical to derive meaningful biological knowledge for integrative multi-omics data analysis.

2 Method

We propose a new graph-structured data integration method, Bayesian Relational Learning (BayReL),
for integrative analysis of multi-omics data. Consider data for different molecular classes as corre-
sponding data views. For each view, we are given a graph Gv = (Vv, Ev) with Nv = |Vv| nodes,
adjacency matrix Av, and node features in a Nv ⇥ D matrix Xv. We note that Gv is completely
defined by Av, hence we use them interchangeably where it does not cause confusion. We define
sets G = {G1, . . . GV } and X = {X1, . . .XV } as the input graphs and attributes of all V views.
The goal of our model is to find inter-relations between nodes of the graphs in different views. We
model these relations as edges of a multi-partite graph G. The nodes in the multi-partite graph G are
the union of the nodes in all views, i.e. VG =

SV
v=1 Vv; and the edges, that will be inferred in our

model, are captured in a multi-adjacency tensor A = {Avv0}Vv,v0=1,v 6=v0 where Avv0
is the Nv ⇥Nv0

bi-adjacency matrix between Vv and Vv0 . We emphasize that unlike matrix completion models, none
of the edges in G are assumed to be observed in our model. We infer our proposed probabilistic model
using variational inference. We now introduce each of the involved latent variables in our model
as well as their corresponding prior and posterior distributions. The graphical model of BayReL is
illustrated in Figure 1.

Embedding nodes to the latent space. The first step is to embed the nodes in each view into a Du

dimensional latent space. We use view-specific latent representations, denoted by a set of Nv ⇥Du

matrices U = {Uv}Vv=1, to reconstruct the graphs as well as inferring the inter-relations. In particular,
we parametrize the distribution over the adjacency matrix of each view Av independently:

Z
p✓(G, U) dU =

VY

v=1

Z
p✓(A

v,Uv) dUv =
VY

v=1

Z
p✓(A

v |Uv) p(Uv) dUv, (1)

where we employ standard diagonal Gaussian as the prior distribution for Uv’s. Given the input data
{Xv, Gv}Vv=1, we approximate the distribution of U with a factorized posterior distribution:

q(U |X ,G) =
VY

v=1

q(Uv |Xv, Gv) =
VY

v=1

NvY

i=1

q(ui,v |Xv, Gv), (2)

where q(ui,v |Xv, Gv) can be any parametric or non-parametric distribution that is derived from the
input data. For simplicity, we use diagonal Gaussian whose parameters are a function of the input.
More specifically, we use two functions denoted by 'emb,µ

v (Xv, Gv) and 'emb,�
v (Xv, Gv) to infer

the mean and variance of the posterior at each view from input data. These functions could be highly
flexible functions that can capture graph structure such as many variants of graph neural networks
including GCN [Defferrard et al., 2016, Kipf and Welling, 2017], GraphSAGE [Hamilton et al.,
2017], and GIN [Xu et al., 2019]. We reconstruct the graphs at each view by deploying inner-product
decoder on view specific latent representations. More specifically,

p(G | U) =
VY

v=1

NvY

i,j=1

p(Av
ij |ui,v,uj,v); p(Av

ij |ui,v,uj,v) = Bernoulli
�
�(ui,v u

T
j,v)

�
, (3)
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where the prior distribution of U" ’s are standard Gaussian. We further 
approximate the distribution of 𝒰 with a factorized posterior distribution 
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Nv ⇥Nv0 bi-adjacency matrix between Vv and Vv0 . We emphasize that unlike matrix completion
models, none of the edges in G are assumed to be observed in our model. We infer our proposed
probabilistic model using variational inference [Hajiramezanali et al., 2020]. We now introduce
each of the involved latent variables in our model as well as their corresponding prior and posterior
distributions. The graphical model of BayReL is illustrated in Figure 1.

Embedding nodes to the latent space. The first step is to embed the nodes in each view into a Du
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More specifically, we use two functions denoted by 'emb,µ
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𝜙"emb: variants of graph neural networks including GCN, GIN, GraphSAGE
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Figure 1: Graphical model for our proposed BayReL. Left: Inference; Right: Generative model.

2017], and GIN [Xu et al., 2019]. We reconstruct the graphs at each view by deploying inner-product
decoder on view specific latent representations. More specifically,

p(G | U) =
VY

v=1

NvY

i,j=1

p(Av
ij |ui,v,uj,v); p(Av

ij |ui,v,uj,v) = Bernoulli
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T
j,v)

�
, (5)

where �(·) is the sigmoid function. The above formulation for node embedding ensures that similar
nodes at each view are close to each other in the latent space.

Constructing relational multi-partite graph. The next step is to construct a dependency graph
among the nodes across different views. Given the latent embedding U that we obtain as described
previously, we construct a set of bipartite graphs with multi-adjacency tensor A = {Avv0}Vv,v0=1,v 6=v0 ,
where Avv0

is the bi-adjacency matrix between Vv and Vv0 . Avv0

ij = 1 if the node i in view v is
connected to the node j in view v0. We model the elements of these bi-adjacency matrices as Bernoulli
random variables. More specifically, the distribution of bi-adjacency matrices are defined as follows

p(Avv0
|Uv,Uv0) =

NvY

i=1

Nv0Y

j=1

Bernoulli
⇣
Avv0

ij |'sim(ui,v,uj,v0)
⌘
, (6)

where 'sim(·, ·) is a score function measuring the similarity between the latent representations
of nodes. The inner-product link [Hajiramezanali et al., 2019a] decoder 'sim

ip (ui,v,uj,v0) =

�(ui,v uT
j,v0) and Bernoulli-Poisson link [Hasanzadeh et al., 2019] decoder 'sim

bp (ui,v,uj,v0) =

1� exp(�
PDu

k=1 ⌧k uik,v ujk,v0) are two examples of potential score functions. In practice, we use
the concrete relaxation [Gal et al., 2017, Hasanzadeh et al., 2020] during training while we sample
from Bernoulli distributions in the testing phase.

We should point out that in many cases, we have a hierarchical structure between views. For example,
in systems biology, proteins are products of genes. In these scenarios, we can construct the set
of directed bipartite graphs, where the direction of edges embeds the hierarchy between nodes in
different views. We may use an asymmetric score function or prior knowledge to encode the direction
of edges. We leave this for future study.

Inferring view-specific latent variables. Having obtained the node representations U and the
dependency multi-adjacency tensor A, we can construct view-specific latent variables, denoted by set
of Nv ⇥Dz matrices Z = {Zv}Vv=1, which can be used to reconstruct the input node attributes. We
parametrize the distributions for node attributes at each view independently as follows

Z
p✓(X ,Z | G,A,U) dZ =

VY

v=1

NvY

i=1

Z
p✓ (zi,v | G,A,U) p✓(xi,v | zi,v) dzi,v. (7)

In our formulation, the distribution of X is dependent on the graph structure at each view as well as
inter-relations across views. This allows the local latent variable zi,v to summarize the information
from the neighboring nodes. We set the prior distribution over zi,v as a diagonal Gaussian whose
parameters are a function of G, A, and U . More specifically, first we construct the overall graph
consisting of all the nodes and edges in all views as well as the edges in G. We can view U as node
attributes on this overall graph. We apply a graph neural network over this overall graph and its
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where 𝜑sim = 𝜎(𝒖-," 𝒖/,"́
1 ) is a score function measuring the similarity 

between the latent representations of nodes.

Inferring view-specific latent variables

Parametrize the distributions for node attributes at each view independently

Experiments
Microbiome-metabolome interactions in cystic fibrosis

Data description
• 172 patients with CF
• 138 unique microbial taxa
• 462 metabolite features

Graph density of input networks:
• Microbiome network: 0.102
• Metabolite network: 0.011

Left: Positive vs negative accuracy in CF dataset. Right: A sub-network of dependency graph consisting of P. aeruginosa.

Prior construction
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Figure 1: Graphical model for our proposed BayReL. Left: Inference; Right: Generative model.
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3Approximate the posterior

Overall likelihood and learning 

Marginal likelihood

attributes to construct the prior. More formally, the following prior is adopted:

p✓(Z | G,A,U) =
VY

v=1

NvY

i=1

p✓(zi,v | G,A,U), p✓(zi,v | G,A,U) = N (µprior
i,v ,�prior

i,v ), (8)

µprior = 'prior,µ
v (Xv, Gv), �prior = 'prior,�

v (Xv, Gv) (9)

where µprior = [µprior
i,v ]i,v = 'prior,µ(G,A,U), � = [�prior

i,v ]i,v = 'prior,�(G,A,U), and 'prior,µ

and 'prior,� are graph neural networks. Given input {Xv, Gv}Vv=1, we approximate the posterior of
latent variables with the following variational distribution:

q(Z |X ,G) =
VY

v=1

NvY

i=1

q(zi,v |Xv, Gv), q(zi,v |Xv, Gv) = N (µpost
i,v ,�post
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v (Xv, Gv), �post = 'post,�

v (Xv, Gv) (11)

where µpost = [µpost
i,v ]i,v = 'post,µ

v (Xv, Gv), � = [�post
i,v ]i,v = 'post,�

v (Xv, Gv), and 'post,µ
v and

'post,�
v are graph neural networks. The distribution over node attributes p✓(xi,v | zi,v) can vary based

on the given data type. For instance, if X is count data it can be modeled by a Poisson distribution;
if it is continuous, Gaussian may be an appropriate choice. In our experiments, we model the node
attributes as normally distributed with a fixed variance, and we reconstruct the mean of the node
attributes at each view by employing a fully connected neural network 'dec

v that operates on zi,v’s
independently.

Overall likelihood and learning. Putting everything together, the marginal likelihood is

p✓(X , G) =
Z VY

v=1

p✓(Xv |Zv) p✓(Zv | G,A,U) p(A |U) p(G | U) p(U) dZ1 . . . dZV dA dU .

We deploy variational inference to optimize the model parameters ✓ and variational parameters � by
minimizing the following derived Evidence Lower Bound (ELBO) for BayReL:

L =
VX

v=1

h
Eq�(Zv | G,X )log p✓(Xv |Zv) + Eq�(Zv,U | G,X )log p✓(Zv | G,A,U)

� Eq�(Zv | G,X )q�(Zv | G,X )
i
�KL (q�(U | G,X ) || p(U)) ,

(12)

where KL denotes the Kullback–Leibler divergence.

3 Related works

Graph-regularized CCA (gCCA). There are several recent CCA extensions that learn shared low-
dimensional representations of multiple sources using the graph-induced knowledge of common
sources [Chen et al., 2019, 2018]. They directly impose the dependency graph between samples into
a regularizer term, but are not capable of considering the dependency graph between features. These
methods are closely related to classic graph-aware regularizers for dimension reduction [Jiang et al.,
2013], data reconstruction, clustering [Shang et al., 2012], and classification. Similar to classical
CCA methods, they cannot cope with high-dimensional data of small sample sizes while multi-omics
data is typically that way when studying complex disease. In addition, these methods focus on
latent representation learning but do not explicitly model relational dependency between features
across views. Hence, they often require ad-hoc post-processing steps, such as taking correlation and
thresholding, to infer inter-relations.

Bayesian CCA. Beyond classical linear algebraic solution based CCA methods, there is a rich
literature on generative modelling interpretation of CCA [Bach and Jordan, 2005, Virtanen et al.,
2011, Klami et al., 2013]. These methods are attractive for their hierarchical construction, improving
their interpretability and expressive power, as well as dealing with high dimensional data of small
sample size. Some of them, such as [Bach and Jordan, 2005, Klami et al., 2013], are generic factor
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Evaluation metrics
• Positive accuracy: accuracy to identify the validated molecules 

interacting with P. aeruginosa 
• Negative accuracy: accuracy of not detecting common targets between 

anaerobic microbes and notable pathogen

miRNA-mRNA interactions in breast cancer 

Data description
• 1156 patients with BRCA
• 11872 genes
• 432 miRNA

Networks:
• Gene regulatory networks (GRN): 

GENIE3 R package
• miRNA-miRNA: MISIM v2.0
• miRNA-mRNA validation: miRNet

We also investigate the robustness of BayReL and BCCA to the number of training samples. Table 2
shows the prediction sensitivity of both models while using different percentage of samples to train
the models. Using 50% of all the samples, while the average prediction sensitivity of BayReL reduces
less than 2% in the worst case scenario (i.e. average node density 0.20), BCCA’s performance
degraded around 6%. This clearly shows the robustness of BayReL to the number of training samples.
In addition, we compare BayReL and BCCA in terms of consistency of identifying significant
miRNA-mRNA interactions as well. We leave out 75% and 50% of all samples to infer the bipartite
graphs, and then compare them with the identified miRNA-mRNA interactions using all of the
samples. The KL divergence values between two inferred bipartite graphs for BayReL are 0.35 and
0.32 when using 25% and 50% of samples, respectively. The KL divergence values for BCCA are
0.67 and 0.62, using 25% and 50% of samples, respectively. The results prove that BayReL performs
better than BCCA with fewer number of observed samples.

To further show the interpretability of BayReL, we inspect the top inferred interactions. Within them,
multiple miRNAs appeared repeatedly. One of them is mir-155 which has been shown to regulate
cell survival, growth, and chemosensitivity by targeting FOXO3 in breast cancer [Kong et al., 2010].
Another identified miRNA is mir-148b which has been reported as the biomarker for breast cancer
prognosis [Shen et al., 2014].

4.3 Precision medicine in acute myeloid leukemia

We apply BayReL to identify molecular markers for targeted treatment of acute myeloid leukemia
(AML) by integrating gene expression profiles and in vitro sensitivity of tumor samples to chemother-
apy drugs with multi-omics prior information incorporated.

Classical multi-omics data integration to identify all gene markers of each drug faces several chal-
lenges. First, compared to the number of involved molecules and system complexity, the number of
available samples for studying complex disease, such as cancer, is often limited, especially consider-
ing disease heterogeneity. Second, due to the many biological and experimental confounders, drug
response could be associated with gene expressions that do not reflect the underlying drug’s biological
mechanism (i.e., false positive associations) [Barretina et al., 2012]. We show even with a small
number of samples, BayReL improves the performance of the classical methods by incorporating
prior knowledge.

Data description. This in vitro drug sensitivity study has both gene expression and drug sensitivity
data to a panel of 160 chemotherapy drugs and targeted inhibitors across 30 AML patients [Lee
et al., 2018]. While 62 drugs are approved by the U.S. Food and Drug Administration (FDA) and
encompassed a broad range of drug action mechanisms, the others are investigational drugs for cancer
patients. Following Lee et al. [2018], we study 53 out of 160 drugs that have less than 50% cell
viability in at least half of the patient samples. Similar at the Cancer Cell Line Encyclopedia (CCLE)
[Barretina et al., 2012] and MERGE [Lee et al., 2018] studies, we use the area under the curve
(AUC) to indicate drug sensitivity across a range of drug concentrations. For gene expression, we
pre-processed RNA-Seq data for 9073 genes [Lee et al., 2018].

Experimental details and evaluation metrics. To apply BayReL, we first construct the GRN based
on the publicly available expression data of the 14 AML cell lines from CCLE using R package
GENIE3. We also construct drug-drug interaction networks based on their action mechanisms.
Specifically, the selected 53 drugs are categorized into 20 broad pharmacodynamics classes [Lee
et al., 2018]; 14 classes contain more than one drugs. Only 16 out of the 53 drugs are shared across
two classes. We consider that two drugs interact if they belong to the same class.

Table 2: Prediction sensitivity (in %) in TCGA for different percentage of training samples.

BCCA BayReL
Avg. degree # of training samples # of training samples

289 (25%) 578 (50%) 1156 (100%) 289 (25%) 578 (50%) 1156 (100%)

0.20 17.4± 0.8 17.6± 1.0 21.0± 0.0 31.9± 3.0 32.1± 1.0 34.0± 2.5
0.30 26.0± 0.8 26.4± 1.0 31.1± 0.7 45.8± 3.1 45.9± 1.5 47.4± 2.6
0.40 35.4± 0.8 35.5± 0.7 41.1± 0.2 57.6± 4.4 58.7± 1.3 59.5± 3.0
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Data description
• 30 AML patients
• 53 drugs
• 9071 genes

Networks:
• GRN: 14 AML cell lines
• drug-drug: action mechanisms
• drug-gene validation: DGIdb

Evaluation metrics
• Prediction sensitivity of identifying reported drug-gene interactions
Table 3: Comparison of prediction sensitivity (in %) in AML dataset for different graph densities.
Avg. degree 0.10 0.15 0.20 0.25 0.30 0.40 0.50

SRCA 8.03 12.00 17.15 20.70 26.85 34.93 45.79
BCCA 9.65± 0.75 14.34± 0.06 18.96± 0.42 23.29± 0.52 28.22± 0.66 38.02± 2.15 46.88± 1.88

BayReL 15.56± 0.75 21.70± 0.65 27.20± 0.17 32.43± 1.02 37.76± 0.85 47.90± 0.43 56.76± 0.50

We evaluate BayReL on this dataset in two ways: 1) The prediction sensitivity of identifying reported
drug-gene interactions based on 797 interactions archived in The Drug–Gene Interaction Database
(DGIdb) [Wagner et al., 2016]. Note that DGIdb contains only the interactions for 43 of the 53
drugs included in our study. 2) Consistency of significant gene-drug interactions in two different
AML datasets with 30 patients and 14 cell lines. We compare BayReL with BCCA in consistency
of significant gene-drug interactions, where all 30 patient samples are used for discovery and the
discovered interactions are validated using 14 cell lines.

Numerical results. Table 3 shows BayReL outperforms both SRCA and BCCA at different average
node degrees in terms of identifying validated gene-drug interactions. If we compare the results by
BayReL and BCCA, their performance difference increases with the increasing density of the bipartite
graph. While BayReL outperforms BCCA by 8% at the average degree 0.10, the improved margin
increases to 10.7% at the average degree 0.50. This confirms that BayReL can identify potential
gene-drug interactions more robustly.

We also compare the gene-drug interactions when we learn the graph using all 30 patient samples and
14 cell lines. The KL divergence between two inferred bipartite graphs are 0.38 and 0.66 for BayReL
and BCCA, respectively. This could potentially account for the lower consistency rate of BCCA
compared to BayReL. The capability of flexibly incorporating prior knowledge as view-specific
graphs is an important factor for BayReL achieving more consistent results.

5 Conclusions

We have proposed BayReL, a novel Bayesian relational representation learning method that infers
interactions across multi-omics data types. BayReL takes advantage of a priori known relationships
among the same class of molecules, modeled as a graph at each corresponding view. By learning
view-specific latent variables as well as a multi-partite graph, more accurate and robust interaction
identification across views can be achieved. We have tested BayReL on three different real-world
omics datasets, which demonstrates that not only BayReL captures meaningful inter-relations across
views, but also it substantially outperforms competing methods in terms of prediction sensitivity,
robustness, and consistency.

Broader Impact

Our BayReL provides a general graph learning framework that can flexibly integrate prior knowledge
when facing a limited number of training samples, which is often the case in scientific and biomedical
applications. BayReL is unique in its model and potential applications. This novel generative
model is able to deal with growing complexity and heterogeneity of modern large-scale data with
complex dependency structures, which is especially critical when analyzing multi-omics data to
derive biological insights, the main focus of our research.

Furthermore, learning with biomedical data can have significant impact in helping decision making
in healthcare. However, decision making in biomedicine has to be robust and aware of potential data
and prediction uncertainty as it can lead to significant consequences (life vs. death). Therefore, it is
critical to develop accurate and reproducible results from new machine learning efforts. BayReL is a
generative model with Bayesian modeling and robust variational inference and hence is equipped
with natural uncertainty estimates, which will help derive reproducible and accurate prediction for
robust decision making, with the ultimate goal of improving human health outcomes, as showcased
in the three experiments.
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• Consistency of significant gene-drug interactions in two different AML 
datasets with 30 patients and 14 cell lines: KL divergence between two 
inferred bipartite graphs are 0.38 and 0.66 for BayReL and BCCA, 
respectively. 

Table 2: Comparison of prediction sensitivity (in %) in AML dataset for different graph densities. 
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Figure 2: Left: Distribution of positive and negative accuracy in different training epochs for BayReL
on CF dataset. Right: A sub-network of dependency graph consisting of P. aeruginosa micorbes,
their validated targets, and anaerobic microbes, inferred using BayReL.

our results are averaged over four runs with different random seeds. More implementation details are
included in the supplement.

4.1 Microbiome-metabolome interactions in cystic fibrosis

To validate whether BayReL can detect known microbe-metabolite interactions, we consider a study
on the lung mucus microbiome of patients with Cystic Fibrosis (CF).

Data description. CF microbiome community within human lungs has been shown to be effected by
altering the chemical environment [Quinn et al., 2015]. Anaerobes and pathogens, two major groups
of microbes, dominate CF. While anaerobes dominate in low oxygen and low pH environments,
pathogens, in particular P. aeruginosa, dominate in the opposite conditions [Morton et al., 2019]. The
dataset includes 16S ribosomal RNA (rRNA) sequencing and metabolomics for 172 patients with
CF. Following Morton et al. [2019], we filter out microbes that appear in less than ten samples, due
to the overwhelming sparsity of microbiome data, resulting in 138 unique microbial taxa and 462
metabolite features. We use the reported target molecules of P. aeruginosa in studies Quinn et al.
[2015] and Morton et al. [2019] as a validation set for the microbiome-metabolome interactions.

Experimental details and evaluation metrics. We first construct the microbiome and metabolomic
networks based on their taxonomies and compound names, respectively. For the microbiome network,
we perform a taxonomic enrichment analysis using Fisher’s test and calculate p-values for each pairs
of microbes. The Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995] is adopted for
multiple test correction and an edge is added between two microbes if the adjusted p-value is lower
than 0.01, resulting in 984 edges in total. The graph density of the microbiome network is 0.102. For
the metabolomics network, there are 1185 edges in total, with each edge representing a connection
between metabolites via a same chemical construction [Morton et al., 2019]. The graph density of
the metabolite network is 0.011.

We evaluate BayReL and baselines in two metrics – 1) accuracy to identify the validated molecules
interacting with P. aeruginosa which will be referred as positive accuracy, 2) accuracy of not detecting
common targets between anaerobic microbes and notable pathogen which we refer to this measure
as negative accuracy. More specifically, we do not expect any common metabolite targets between
known anaerobic microbes (Veillonella, Fusobacterium, Prevotella, and Streptococcus) and notable
pathogen P. aeruginosa. If a metabolite molecule x is associated with a anaerobic microbe y, then x
is more likely not to be associated with pathogen P. aeruginosa and vice versa. More formally, given
two disjoint sets of metabolites s1 and s2 and the set of all microbes T negative accuracy is defined as
1 �

P
i2s1

P
j2s2

P
k2T 1(i and j are connected to k)

|s1|⇥|s2|⇥|T| , where 1(·) is an indicator function. Higher negative
accuracy is better as there are fewer common targets between two sets of microbiomes.

Numerical results. Considering higher than 97% negative accuracy, the best positive accuracy of
BayReL, BCCA, and SRCA are 82.7% ± 4.7, 28.30% ± 3.21, and 26.41%, respectively. Clearly,
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attributes to construct the prior. More formally, the following prior is adopted:

p✓(Z | G,A,U) =
VY

v=1

NvY

i=1

p✓(zi,v | G,A,U), p✓(zi,v | G,A,U) = N (µprior
i,v ,�prior

i,v ), (8)

µprior = 'prior,µ(A,U), � = 'prior,�(A,U) (9)

where µprior = [µprior
i,v ]i,v = 'prior,µ(G,A,U), � = [�prior

i,v ]i,v = 'prior,�(G,A,U), and 'prior,µ

and 'prior,� are graph neural networks. Given input {Xv, Gv}Vv=1, we approximate the posterior of
latent variables with the following variational distribution:

q(Z |X ,G) =
VY

v=1

NvY

i=1

q(zi,v |Xv, Gv), q(zi,v |Xv, Gv) = N (µpost
i,v ,�post

i,v ) (10)

µpost = {'post,µ
v (Xv, Gv)}Vv=1, �post = {'post,�

v (Xv, Gv)}Vv=1 (11)

where µpost = [µpost
i,v ]i,v = 'post,µ

v (Xv, Gv), � = [�post
i,v ]i,v = 'post,�

v (Xv, Gv), and 'post,µ
v and

'post,�
v are graph neural networks. The distribution over node attributes p✓(xi,v | zi,v) can vary based

on the given data type. For instance, if X is count data it can be modeled by a Poisson distribution;
if it is continuous, Gaussian may be an appropriate choice. In our experiments, we model the node
attributes as normally distributed with a fixed variance, and we reconstruct the mean of the node
attributes at each view by employing a fully connected neural network 'dec

v that operates on zi,v’s
independently.

Overall likelihood and learning. Putting everything together, the marginal likelihood is

p✓(X , G) =
Z VY

v=1

p✓(Xv |Zv) p✓(Zv | G,A,U) p(A |U) p(G | U) p(U) dZ1 . . . dZV dA dU .

We deploy variational inference to optimize the model parameters ✓ and variational parameters � by
minimizing the following derived Evidence Lower Bound (ELBO) for BayReL:

L =
VX

v=1

h
Eq�(Zv | G,X )log p✓(Xv |Zv) + Eq�(Zv,U | G,X )log p✓(Zv | G,A,U)

� Eq�(Zv | G,X )q�(Zv | G,X )
i
�KL (q�(U | G,X ) || p(U)) ,

(12)

where KL denotes the Kullback–Leibler divergence.

3 Related works

Graph-regularized CCA (gCCA). There are several recent CCA extensions that learn shared low-
dimensional representations of multiple sources using the graph-induced knowledge of common
sources [Chen et al., 2019, 2018]. They directly impose the dependency graph between samples into
a regularizer term, but are not capable of considering the dependency graph between features. These
methods are closely related to classic graph-aware regularizers for dimension reduction [Jiang et al.,
2013], data reconstruction, clustering [Shang et al., 2012], and classification. Similar to classical
CCA methods, they cannot cope with high-dimensional data of small sample sizes while multi-omics
data is typically that way when studying complex disease. In addition, these methods focus on
latent representation learning but do not explicitly model relational dependency between features
across views. Hence, they often require ad-hoc post-processing steps, such as taking correlation and
thresholding, to infer inter-relations.

Bayesian CCA. Beyond classical linear algebraic solution based CCA methods, there is a rich
literature on generative modelling interpretation of CCA [Bach and Jordan, 2005, Virtanen et al.,
2011, Klami et al., 2013]. These methods are attractive for their hierarchical construction, improving
their interpretability and expressive power, as well as dealing with high dimensional data of small
sample size. Some of them, such as [Bach and Jordan, 2005, Klami et al., 2013], are generic factor
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