
Bayesian Graph Neural Networks with Adaptive
Connection Sampling

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki,
Mingyuan Zhou (UT-Austin), Nick Duffield, Krishna Narayanan, Xiaoning Qian

37-th International Conference on Machine Learning (ICML)

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 1 / 18

GCN limitations

• Over-smoothing
I due to the nature of low-pass filtering of GCNs
I training accuracy can drop with the number of layers, in

even shallow networks

• No uncertainty quantification
I due to deterministic modeling
I lack of Bayesian interpretation

• Existing stochastic regularization and reduction
techniques

I DropOut, DropEdge, node sampling, random walk
I not very successful in alleviating over-smoothing
I no Bayesian approximation interpretation
I difficulty in hand-tuning of hyper-parameters

Number of Layers

A
cc

ur
ac

y

Train

Test

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 2 / 18

Graph DropConnect (GDC); overview

We propose GDC, a unified framework for stochastic regularization and reduction:

• generalization of existing GCN regularization methods

• enabling natural Bayesian interpretation and prediction with uncertainty quantification
• learnable drop rates

I drop rates and masks are modeled as beta and Bernoulli random variables
I inferring drop rates with variational inference, coupled with GCN training:

• approximate optimization with concrete relaxation

• direct optimization using Augment-REINFORCE-Merge (ARM)

• better regularization for GCNs by alleviating over-smoothing

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 3 / 18

Review; GCN

n1

n2

n3n4

hl
11 hl

12

hl
21 hl

22

hl
42hl

41 hl
31 hl

32

n1

n2

n3n4

hl+1
11 hl+1

12

hl+1
21 hl+1

22

hl+1
41 hl+1

42 hl+1
31 hl+1

32

Layer l Layer l + 1

GCN

H(l+1) = σ
(
N(A)H(l)W(l)

)
• Connections are localized

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
σ = activation function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 4 / 18

Review; GCN, contd.

hl
11

hl
12

hl
21

hl
22

hl
31

hl
32

hl
41

hl
42

n1

n2

n3

n4

hl+1
11

hl+1
12

hl+1
21

hl+1
22

hl+1
31

hl+1
32

hl+1
41

hl+1
42

n1

n2

n3

n4

Layer l Layer l + 1

H(l+1) = σ
(
N(A)H(l)W(l)

)

n1

n2

n3n4

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
σ = activation function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 5 / 18

Review; DropOut

hl
11

hl
12

hl
21

hl
22

hl
31

hl
32

hl
41

hl
42

n1

n2

n3

n4

hl+1
11

hl+1
12

hl+1
21

hl+1
22

hl+1
31

hl+1
32

hl+1
41

hl+1
42

n1

n2

n3

n4

Layer l Layer l + 1

H(l+1) = σ
(
N(A)(Z(l) �H(l))W(l)

)

n1

n2

n3n4

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
Z(l) = Bernoulli mask, layer l
σ = activation function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 6 / 18

Review; DropEdge

hl
11

hl
12

hl
21

hl
22

hl
31

hl
32

hl
41

hl
42

hl+1
11

hl+1
12

hl+1
21

hl+1
22

hl+1
31

hl+1
32

hl+1
41

hl+1
42

Layer l Layer l + 1

n1

n2

n3

n4

n1

n2

n3

n4

H(l+1) = σ
(
N(A� Z(l))H(l)W(l)

)

n1

n2

n3n4

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
Z(l) = Bernoulli mask, layer l
σ = activation function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 7 / 18

Proposed method; GDC

hl
11

hl
12

hl
21

hl
22

hl
31

hl
32

hl
41

hl
42

hl+1
11

hl+1
12

hl+1
21

hl+1
22

hl+1
31

hl+1
32

hl+1
41

hl+1
42

Layer l Layer l + 1

n1

n2

n3

n4

n1

n2

n3

n4

H(l+1)[:, j] = σ

(
fl∑
i=1

N(A� Z
(l)
i,j)H

(l)[:, i]W(l)[i, j]

)

n1

n2

n3n4

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
Z

(l)
i,j = Bernoulli mask, layer l

fl = # of features, layer l
σ = activation function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 8 / 18

GDC as a Bayesian approximation

• Bayesian neural network (BNN):

I Weights are random variables

• Graph DropConnect: randomness in adjacency matrix

I How to transform randomness from adjacency to weights?

I How to choose prior and posterior such that BNN loss is equal to GDC loss?

LGDC =
1

|O|
∑
i∈O

E(yi, ŷi) + λ

L∑
l=1

||W(l)||22

O = set of nodes with observed labels

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 9 / 18

GDC as a Bayesian approximation, contd.

• For brevity, assume Z
(l)
i,j are the same for j’s & rewrite GDC equation for each node

• Distribution over masks: z
(l)
vu ∼ Ber(πl)

⇒ h(l+1)
v = σ

 1

cv

(∑
u∈N (v)∪{v}

h(l)
u diag(z(l)vu)

)
W(l)



= σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u

(
diag(z(l)vu)W(l)

) = σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u W(l)

vu


• Discrete prior distribution: p(W

(l)
vu) ∝ e

1
2
W

(l)
vu W

(l)
vu

T

• Posterior distribution: qθl(W
(l)
vu) = πl δ(W

(l)
vu − 0) + (1− πl) δ(W

(l)
vu −M(l))

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 10 / 18

GDC as a Bayesian approximation, contd.

• For brevity, assume Z
(l)
i,j are the same for j’s & rewrite GDC equation for each node

• Distribution over masks: z
(l)
vu ∼ Ber(πl)

⇒ h(l+1)
v = σ

 1

cv

(∑
u∈N (v)∪{v}

h(l)
u diag(z(l)vu)

)
W(l)


= σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u

(
diag(z(l)vu)W(l)

) = σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u W(l)

vu



• Discrete prior distribution: p(W
(l)
vu) ∝ e

1
2
W

(l)
vu W

(l)
vu

T

• Posterior distribution: qθl(W
(l)
vu) = πl δ(W

(l)
vu − 0) + (1− πl) δ(W

(l)
vu −M(l))

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 10 / 18

GDC as a Bayesian approximation, contd.

• For brevity, assume Z
(l)
i,j are the same for j’s & rewrite GDC equation for each node

• Distribution over masks: z
(l)
vu ∼ Ber(πl)

⇒ h(l+1)
v = σ

 1

cv

(∑
u∈N (v)∪{v}

h(l)
u diag(z(l)vu)

)
W(l)


= σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u

(
diag(z(l)vu)W(l)

) = σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u W(l)

vu


• Discrete prior distribution: p(W

(l)
vu) ∝ e

1
2
W

(l)
vu W

(l)
vu

T

• Posterior distribution: qθl(W
(l)
vu) = πl δ(W

(l)
vu − 0) + (1− πl) δ(W

(l)
vu −M(l))

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 10 / 18

Variational inference for GDC

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
−

L∑
l=1

KL
(
q(ω(l), Z(l)) || p(ω(l), Z(l))

)
Yo = available labels for the observed nodes

• KL divergence:

KL
(
q(ω(l),Z(l)) || p(ω(l),Z(l))

)
∝ |E| (1− πl)

2
||M(l)||22−H(πl)+

|E|∑
e=1

KL
(
q(z(l)e) || p(z(l)e)

)
H(πl) = Bernoulli entropy E = set of edges + self-loops

• For fixed πl’s, a GCN with GDC & `2 norm regularizer approximates a Bayesian NN!

Corollary
Any graph neural network with random walk sampling, such as GraphSAGE, is an approximation
of a Bayesian graph neural network as long as outputs are calculated using Monte-Carlo sampling.

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 11 / 18

Variational inference for GDC

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
−

L∑
l=1

KL
(
q(ω(l), Z(l)) || p(ω(l), Z(l))

)
Yo = available labels for the observed nodes

• KL divergence:

KL
(
q(ω(l),Z(l)) || p(ω(l),Z(l))

)
∝ |E| (1− πl)

2
||M(l)||22−H(πl)+

|E|∑
e=1

KL
(
q(z(l)e) || p(z(l)e)

)
H(πl) = Bernoulli entropy E = set of edges + self-loops

• For fixed πl’s, a GCN with GDC & `2 norm regularizer approximates a Bayesian NN!

Corollary
Any graph neural network with random walk sampling, such as GraphSAGE, is an approximation
of a Bayesian graph neural network as long as outputs are calculated using Monte-Carlo sampling.

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 11 / 18

Variational inference for GDC

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
−

L∑
l=1

KL
(
q(ω(l), Z(l)) || p(ω(l), Z(l))

)
Yo = available labels for the observed nodes

• KL divergence:

KL
(
q(ω(l),Z(l)) || p(ω(l),Z(l))

)
∝ |E| (1− πl)

2
||M(l)||22−H(πl)+

|E|∑
e=1

KL
(
q(z(l)e) || p(z(l)e)

)
H(πl) = Bernoulli entropy E = set of edges + self-loops

• For fixed πl’s, a GCN with GDC & `2 norm regularizer approximates a Bayesian NN!

Corollary
Any graph neural network with random walk sampling, such as GraphSAGE, is an approximation
of a Bayesian graph neural network as long as outputs are calculated using Monte-Carlo sampling.

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 11 / 18

Learnable GDC

• High sparsity is required to achieve good performance [Rong et. al., 2019]
I We impose a beta-Bernoulli prior to the binary random masks

• Assumption: drop masks are independent across features
I Following equations are for fl = 1

• Prior distribution:

z(l)e ∼ Bernoulli(πl), πl ∼ Beta(c/L, c(L− 1)/L)

c = constant

• Posterior distribution (Kumaraswamy distribution):

q(Z(l), πl) =

|E|∏
e=1

q(z(l)e |πl) q(πl); q(πl; al, bl) = alblπ
al−1
l (1− πall)bl−1

al > 0, bl > 0 = variational parameters

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 12 / 18

Learnable GDC, contd.

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
+
|E| (1− πl)

2
||M(l)||22

−
|E|∑
e=1

KL
(
q(z(l)e , πl) || p(z(l)e , πl)

)

• KL divergence:

KL
(
q(Z(l), πl) || p(Z(l), πl)

)
=

|E|∑
e=1

KL
(
q(z(l)e |πl) || p(z(l)e |πl)

)
+ KL (q(πl) || p(πl)) ,

KL (q(πl) || p(πl)) =
al − c/L

al

(
−γ −Ψ(bl)−

1

bl

)
+ log

albl
c/L
− bl − 1

bl

γ = Euler-Mascheroni constant, Ψ(·) = digamma function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 13 / 18

Learnable GDC, contd.

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
+
|E| (1− πl)

2
||M(l)||22

−
|E|∑
e=1

KL
(
q(z(l)e , πl) || p(z(l)e , πl)

)
• KL divergence:

KL
(
q(Z(l), πl) || p(Z(l), πl)

)
=

|E|∑
e=1

KL
(
q(z(l)e |πl) || p(z(l)e |πl)

)
+ KL (q(πl) || p(πl)) ,

KL (q(πl) || p(πl)) =
al − c/L

al

(
−γ −Ψ(bl)−

1

bl

)
+ log

albl
c/L
− bl − 1

bl

γ = Euler-Mascheroni constant, Ψ(·) = digamma function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 13 / 18

Optimization of learnable GDC

• Masks are discrete random variables⇒ reparametrization trick cannot be used
I Solution 1: use concrete relaxation of Bernoulli

z̃(l)e = sigmoid

(
1

t
log
(πl

1− πl
)

+ log
(u

1− u
))

t = temperature, u = sample from Unif[0, 1]

I Solution 2: Augment-REINFORCE-Merge (ARM) gradient estimates
• Direct optimization of variational parameters
• Variational loss is unbiased and has low variance
• More accurate gradient estimate
• Slightly higher computational complexity

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 14 / 18

Semi-supervised node classification

Method Cora Citeseer
2 layers 4 layers 2 layers 4 layers

GCN-DO 80.98 78.24 70.44 64.38
GCN-DE 78.36 73.40 70.52 57.14
GCN-DO-DE 80.58 79.20 70.74 64.84

GCN-BBDE 81.58 80.42 71.46 68.58
GCN-BBGDC 81.80 82.20 71.72 70.00

Method Cora (4 layers) Citeseer (4 layers)

GCN-BDE-ARM 79.95 67.90
GCN-BBDE-ARM 81.78 69.43
GCN-BBGDC-ARM 82.40 70.25

I Learning drop rates improves accuracy
I More substantial in deeper GCNs

I BBGDC alleviates over-smoothing
I Specially in deeper GCNs

I Beta-Bernoulli better than Bernoulli
I Due to sparsity imposed by BB

I Direct optimization better than concrete
I Due to bias in concrete relaxation

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 15 / 18

Uncertainty quantification

• Patch Accuracy vs Patch Uncertainty (on Cora dataset)
I PAvPU = (nac + niu)/(nac + nau + nic + niu)
I Higher PAvPU⇒ certain predictions are accurate & inaccurate predictions are

uncertain

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.76

0.77

0.78

0.79

0.80

0.81
PA

vP
U

GCN-BBGDC
GCN-DO

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 16 / 18

Over-smoothing and over-fitting (Cora)

• TV(x) = ‖x− (1/|λmax|)Ax‖22
I Low TV ⇒ most probably

over-smoothing occurred

0 250 500 750 1000 1250 1500 1750 2000
Training Epoch

0.28

0.30

0.32

0.34

0.36

0.38

0.40

To
ta

l V
ar

ia
tio

n

GCN-DO, Hidden 1
GCN-DO, Hidden 2
GCN-BBGDC, Hidden 1
GCN-BBGDC, Hidden 2

• Over-fitting occurs in deep models

• Over-smoothing intensifies in deeper
models

2 3 4 5 6 8 16
Number of Layers

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Ac
cu

ra
cy

 %

GCN-BBGDC
GCN-DO

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 17 / 18

Thanks!
armanihm@tamu.edu

https://github.com/armanihm/GDC

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 18 / 18

	Introduction

