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GCN limitations

• Over-smoothing
I due to the nature of low-pass filtering of GCNs
I training accuracy can drop with the number of layers, in

even shallow networks

• No uncertainty quantification
I due to deterministic modeling
I lack of Bayesian interpretation

• Existing stochastic regularization and reduction
techniques

I DropOut, DropEdge, node sampling, random walk
I not very successful in alleviating over-smoothing
I no Bayesian approximation interpretation
I difficulty in hand-tuning of hyper-parameters
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Graph DropConnect (GDC); overview

We propose GDC, a unified framework for stochastic regularization and reduction:

• generalization of existing GCN regularization methods

• enabling natural Bayesian interpretation and prediction with uncertainty quantification
• learnable drop rates

I drop rates and masks are modeled as beta and Bernoulli random variables
I inferring drop rates with variational inference, coupled with GCN training:

• approximate optimization with concrete relaxation

• direct optimization using Augment-REINFORCE-Merge (ARM)

• better regularization for GCNs by alleviating over-smoothing
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Review; GCN
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H(l+1) = σ
(
N(A)H(l)W(l)

)
• Connections are localized

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
σ = activation function
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Review; GCN, contd.
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Review; DropOut
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Review; DropEdge

hl
11

hl
12

hl
21

hl
22

hl
31

hl
32

hl
41

hl
42

hl+1
11

hl+1
12

hl+1
21

hl+1
22

hl+1
31

hl+1
32

hl+1
41

hl+1
42

Layer l Layer l + 1

n1

n2

n3

n4

n1

n2

n3

n4

H(l+1) = σ
(
N(A� Z(l))H(l)W(l)

)

n1

n2

n3n4

A = adjacency matrix
N = normalizing operator
W = weight matrix
H(l) = hidden layer l
Z(l) = Bernoulli mask, layer l
σ = activation function

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 7 / 18



Proposed method; GDC
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GDC as a Bayesian approximation

• Bayesian neural network (BNN):

I Weights are random variables

• Graph DropConnect: randomness in adjacency matrix

I How to transform randomness from adjacency to weights?

I How to choose prior and posterior such that BNN loss is equal to GDC loss?

LGDC =
1

|O|
∑
i∈O

E(yi, ŷi) + λ

L∑
l=1

||W(l)||22

O = set of nodes with observed labels
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GDC as a Bayesian approximation, contd.

• For brevity, assume Z
(l)
i,j are the same for j’s & rewrite GDC equation for each node

• Distribution over masks: z
(l)
vu ∼ Ber(πl)

⇒ h(l+1)
v = σ

 1

cv
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)
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) = σ

 1

cv

∑
u∈N (v)∪{v}

h(l)
u W(l)

vu


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• Posterior distribution: qθl(W
(l)
vu) = πl δ(W

(l)
vu − 0) + (1− πl) δ(W

(l)
vu −M(l))
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Variational inference for GDC

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
−

L∑
l=1

KL
(
q(ω(l), Z(l)) || p(ω(l), Z(l))

)
Yo = available labels for the observed nodes

• KL divergence:

KL
(
q(ω(l),Z(l)) || p(ω(l),Z(l))

)
∝ |E| (1− πl)

2
||M(l)||22−H(πl)+

|E|∑
e=1

KL
(
q(z(l)e ) || p(z(l)e )

)
H(πl) = Bernoulli entropy E = set of edges + self-loops

• For fixed πl’s, a GCN with GDC & `2 norm regularizer approximates a Bayesian NN!

Corollary
Any graph neural network with random walk sampling, such as GraphSAGE, is an approximation
of a Bayesian graph neural network as long as outputs are calculated using Monte-Carlo sampling.
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Learnable GDC

• High sparsity is required to achieve good performance [Rong et. al., 2019]
I We impose a beta-Bernoulli prior to the binary random masks

• Assumption: drop masks are independent across features
I Following equations are for fl = 1

• Prior distribution:

z(l)e ∼ Bernoulli(πl), πl ∼ Beta(c/L, c(L− 1)/L)

c = constant

• Posterior distribution (Kumaraswamy distribution):

q(Z(l), πl) =

|E|∏
e=1

q(z(l)e |πl) q(πl); q(πl; al, bl) = alblπ
al−1
l (1− πall )bl−1

al > 0, bl > 0 = variational parameters
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Learnable GDC, contd.

• Loss function:

Eq({ω(l),Z(l)}Ll=1)

[
logP (Yo |X, {ω(l), Z(l)}Ll=1)

]
+
|E| (1− πl)

2
||M(l)||22

−
|E|∑
e=1

KL
(
q(z(l)e , πl) || p(z(l)e , πl)

)

• KL divergence:

KL
(
q(Z(l), πl) || p(Z(l), πl)

)
=

|E|∑
e=1

KL
(
q(z(l)e |πl) || p(z(l)e |πl)

)
+ KL (q(πl) || p(πl)) ,

KL (q(πl) || p(πl)) =
al − c/L

al

(
−γ −Ψ(bl)−

1

bl

)
+ log

albl
c/L
− bl − 1

bl

γ = Euler-Mascheroni constant, Ψ(·) = digamma function
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Optimization of learnable GDC

• Masks are discrete random variables⇒ reparametrization trick cannot be used
I Solution 1: use concrete relaxation of Bernoulli

z̃(l)e = sigmoid

(
1

t
log
( πl

1− πl
)

+ log
( u

1− u
))

t = temperature, u = sample from Unif[0, 1]

I Solution 2: Augment-REINFORCE-Merge (ARM) gradient estimates
• Direct optimization of variational parameters
• Variational loss is unbiased and has low variance
• More accurate gradient estimate
• Slightly higher computational complexity
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Semi-supervised node classification

Method Cora Citeseer
2 layers 4 layers 2 layers 4 layers

GCN-DO 80.98 78.24 70.44 64.38
GCN-DE 78.36 73.40 70.52 57.14
GCN-DO-DE 80.58 79.20 70.74 64.84

GCN-BBDE 81.58 80.42 71.46 68.58
GCN-BBGDC 81.80 82.20 71.72 70.00

Method Cora (4 layers) Citeseer (4 layers)

GCN-BDE-ARM 79.95 67.90
GCN-BBDE-ARM 81.78 69.43
GCN-BBGDC-ARM 82.40 70.25

I Learning drop rates improves accuracy
I More substantial in deeper GCNs

I BBGDC alleviates over-smoothing
I Specially in deeper GCNs

I Beta-Bernoulli better than Bernoulli
I Due to sparsity imposed by BB

I Direct optimization better than concrete
I Due to bias in concrete relaxation
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Uncertainty quantification

• Patch Accuracy vs Patch Uncertainty (on Cora dataset)
I PAvPU = (nac + niu)/(nac + nau + nic + niu)
I Higher PAvPU⇒ certain predictions are accurate & inaccurate predictions are

uncertain
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Over-smoothing and over-fitting (Cora)

• TV(x) = ‖x− (1/|λmax|)Ax‖22
I Low TV ⇒ most probably

over-smoothing occurred
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Thanks!
armanihm@tamu.edu

https://github.com/armanihm/GDC
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