

Bayesian Graph Neural Networks with Adaptive Connection Sampling

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou (UT-Austin), Nick Duffield, Krishna Narayanan, Xiaoning Qian

37-th International Conference on Machine Learning (ICML)

- Over-smoothing
 - due to the nature of low-pass filtering of GCNs
 - training accuracy can drop with the number of layers, in even shallow networks
- No uncertainty quantification
 - due to deterministic modeling
 - lack of Bayesian interpretation
- Existing stochastic regularization and reduction techniques
 - DropOut, DropEdge, node sampling, random walk
 - not very successful in alleviating over-smoothing
 - no Bayesian approximation interpretation
 - difficulty in hand-tuning of hyper-parameters

We propose GDC, a unified framework for stochastic regularization and reduction:

- generalization of existing GCN regularization methods
- enabling natural Bayesian interpretation and prediction with uncertainty quantification
- learnable drop rates
 - drop rates and masks are modeled as beta and Bernoulli random variables
 - ▶ inferring drop rates with variational inference, coupled with GCN training:
 - approximate optimization with concrete relaxation
 - direct optimization using Augment-REINFORCE-Merge (ARM)
- better regularization for GCNs by alleviating over-smoothing

Review; GCN

$$\mathbf{H}^{(l+1)} = \sigma\left(\mathfrak{N}(\mathbf{A}) \,\mathbf{H}^{(l)} \,\mathbf{W}^{(l)}\right)$$

Connections are localized

$$\begin{split} \mathbf{A} &= \text{adjacency matrix} \\ \mathfrak{N} &= \text{normalizing operator} \\ \mathbf{W} &= \text{weight matrix} \\ \mathbf{H}^{(l)} &= \text{hidden layer } l \\ \sigma &= \text{activation function} \end{split}$$

Review; GCN, contd.

A = adjacency matrix \mathfrak{N} = normalizing operator W = weight matrix H^(l) = hidden layer l σ = activation function

Review; DropEdge

Proposed method; GDC

 $\mathbf{A} = adjacency matrix \\ \mathfrak{N} = normalizing operator \\ \mathbf{W} = weight matrix \\ \mathbf{H}^{(l)} = hidden layer l \\ \mathbf{Z}_{i,j}^{(l)} = Bernoulli mask, layer l \\ f_l = \# of features, layer l \\ \sigma = activation function$

- Bayesian neural network (BNN):
 - Weights are random variables
- Graph DropConnect: randomness in adjacency matrix
 - How to transform randomness from adjacency to weights?
 - How to choose prior and posterior such that BNN loss is equal to GDC loss?

$$\mathcal{L}_{\mathsf{GDC}} = \frac{1}{|\mathcal{O}|} \sum_{i \in \mathcal{O}} E(y_i, \, \hat{y}_i) + \lambda \sum_{l=1}^{L} ||\mathbf{W}^{(l)}||_2^2$$

 \mathcal{O} = set of nodes with observed labels

GDC as a Bayesian approximation, contd.

- For brevity, assume $\mathbf{Z}_{i,j}^{(l)}$ are the same for j's & rewrite GDC equation for each node
- Distribution over masks: $\mathbf{z}_{vu}^{(l)} \sim \operatorname{Ber}(\pi_l)$

$$\Rightarrow \mathbf{h}_{v}^{(l+1)} = \sigma \left(\frac{1}{c_{v}} \left(\sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \operatorname{diag}(\mathbf{z}_{vu}^{(l)}) \right) \mathbf{W}^{(l)} \right)$$

GDC as a Bayesian approximation, contd.

- For brevity, assume $\mathbf{Z}_{i,j}^{(l)}$ are the same for j's & rewrite GDC equation for each node
- Distribution over masks: $\mathbf{z}_{vu}^{(l)} \sim \mathrm{Ber}(\pi_l)$

$$\Rightarrow \mathbf{h}_{v}^{(l+1)} = \sigma \left(\frac{1}{c_{v}} \left(\sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \operatorname{diag}(\mathbf{z}_{vu}^{(l)}) \right) \mathbf{W}^{(l)} \right)$$

$$= \sigma \left(\frac{1}{c_{v}} \sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \left(\operatorname{diag}(\mathbf{z}_{vu}^{(l)}) \mathbf{W}^{(l)} \right) \right) = \sigma \left(\frac{1}{c_{v}} \sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \mathbf{W}_{vu}^{(l)} \right)$$

GDC as a Bayesian approximation, contd.

- For brevity, assume $\mathbf{Z}_{i,j}^{(l)}$ are the same for j's & rewrite GDC equation for each node
- Distribution over masks: $\mathbf{z}_{vu}^{(l)} \sim \mathrm{Ber}(\pi_l)$

$$\Rightarrow \mathbf{h}_{v}^{(l+1)} = \sigma \left(\frac{1}{c_{v}} \left(\sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \operatorname{diag}(\mathbf{z}_{vu}^{(l)}) \right) \mathbf{W}^{(l)} \right)$$
$$= \sigma \left(\frac{1}{c_{v}} \sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \left(\operatorname{diag}(\mathbf{z}_{vu}^{(l)}) \mathbf{W}^{(l)} \right) \right) = \sigma \left(\frac{1}{c_{v}} \sum_{u \in \mathcal{N}(v) \cup \{v\}} \mathbf{h}_{u}^{(l)} \mathbf{W}_{vu}^{(l)} \right)$$

- Discrete prior distribution:
- Posterior distribution:

$$p(\mathbf{W}_{vu}^{(l)}) \propto \mathbf{e}^{\frac{1}{2} \mathbf{W}_{vu}^{(l)} \mathbf{W}_{vu}^{(l)^{T}}}$$
$$q_{\theta_{l}}(\mathbf{W}_{vu}^{(l)}) = \pi_{l} \,\delta(\mathbf{W}_{vu}^{(l)} - \mathbf{0}) + (1 - \pi_{l}) \,\delta(\mathbf{W}_{vu}^{(l)} - \mathbf{M}^{(l)})$$

Variational inference for GDC

TEXAS A&M

• Loss function:

$$\mathbb{E}_{q(\{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L})} \left[\log P(Y_{o} \mid X, \{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L}) \right] - \sum_{l=1}^{L} \mathrm{KL} \left(q(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \mid \mid p(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \right)$$

 Y_o = available labels for the observed nodes

Variational inference for GDC

• Loss function:

$$\mathbb{E}_{q(\{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L})} \left[\log P(Y_{o} \mid X, \{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L}) \right] - \sum_{l=1}^{L} \mathrm{KL} \left(q(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \mid \mid p(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \right)$$

 $Y_o =$ available labels for the observed nodes

• KL divergence:

$$\operatorname{KL}\left(q(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) || p(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)})\right) \propto \frac{|\mathcal{E}| (1 - \pi_l)}{2} || \mathbf{M}^{(l)} ||_2^2 - \mathcal{H}(\pi_l) + \sum_{e=1}^{|\mathcal{C}|} \operatorname{KL}\left(q(\mathbf{z}_e^{(l)}) || p(\mathbf{z}_e^{(l)})\right)$$
$$\mathcal{H}(\pi_l) = \operatorname{Bernoulli entropy} \qquad \mathcal{E} = \operatorname{set of edges} + \operatorname{self-loops}$$

Variational inference for GDC

• Loss function:

$$\mathbb{E}_{q(\{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L})} \left[\log P(Y_{o} \mid X, \{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L}) \right] - \sum_{l=1}^{L} \mathrm{KL} \left(q(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \mid \mid p(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \right)$$

 $Y_o =$ available labels for the observed nodes

• KL divergence:

$$\begin{split} \operatorname{KL}\left(q(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}) \mid\mid p(\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)})\right) &\propto \frac{|\mathcal{E}|\left(1 - \pi_{l}\right)}{2} \mid\mid \mathbf{M}^{(l)} \mid\mid_{2}^{2} - \mathcal{H}(\pi_{l}) + \sum_{e=1}^{|\mathcal{E}|} \operatorname{KL}\left(q(\mathbf{z}_{e}^{(l)}) \mid\mid p(\mathbf{z}_{e}^{(l)})\right) \\ \mathcal{H}(\pi_{l}) &= \mathsf{Bernoulli entropy} \qquad \mathcal{E} = \mathsf{set of edges} + \mathsf{self-loops} \end{split}$$

• For fixed π_l 's, a GCN with GDC & ℓ_2 norm regularizer approximates a Bayesian NN!

Corollary

Any graph neural network with random walk sampling, such as GraphSAGE, is an approximation of a Bayesian graph neural network as long as outputs are calculated using Monte-Carlo sampling.

TEXAS

Learnable GDC

- High sparsity is required to achieve good performance [Rong et. al., 2019]
 - We impose a beta-Bernoulli prior to the binary random masks
- · Assumption: drop masks are independent across features
 - Following equations are for $f_l = 1$
- Prior distribution:

 a_1

 $z_e^{(l)} \sim \text{Bernoulli}(\pi_l), \qquad \pi_l \sim \text{Beta}(c/L, c(L-1)/L)$

c = constant

• Posterior distribution (Kumaraswamy distribution):

$$q(\mathbf{Z}^{(l)}, \pi_l) = \prod_{e=1}^{|\mathcal{E}|} q(z_e^{(l)} \mid \pi_l) q(\pi_l); \qquad q(\pi_l; a_l, b_l) = a_l b_l \pi_l^{a_l - 1} (1 - \pi_l^{a_l})^{b_l - 1}$$

> 0, $b_l > 0$ = variational parameters

Learnable GDC, contd.

TEXAS A&M

• Loss function:

$$\mathbb{E}_{q(\{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L})} \left[\log P(Y_{o} \mid X, \{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L}) \right] + \frac{|\mathcal{E}| (1 - \pi_{l})}{2} ||\mathbf{M}^{(l)}||_{2}^{2} \\ - \sum_{o=1}^{|\mathcal{E}|} \mathrm{KL} \left(q(\mathbf{z}_{e}^{(l)}, \pi_{l}) || p(\mathbf{z}_{e}^{(l)}, \pi_{l}) \right)$$

TEXAS A&M

• Loss function:

$$\mathbb{E}_{q(\{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L})} \left[\log P(Y_{o} \mid X, \{\boldsymbol{\omega}^{(l)}, \mathbf{Z}^{(l)}\}_{l=1}^{L}) \right] + \frac{|\mathcal{E}| (1 - \pi_{l})}{2} ||\mathbf{M}^{(l)}||_{2}^{2} \\ - \sum_{e=1}^{|\mathcal{E}|} \mathrm{KL} \left(q(\mathbf{z}_{e}^{(l)}, \pi_{l}) || p(\mathbf{z}_{e}^{(l)}, \pi_{l}) \right)$$

• KL divergence:

$$\operatorname{KL}\left(q(\mathbf{Z}^{(l)}, \pi_l) || p(\mathbf{Z}^{(l)}, \pi_l)\right) = \sum_{e=1}^{|\mathcal{E}|} \operatorname{KL}\left(q(z_e^{(l)} | \pi_l) || p(z_e^{(l)} | \pi_l)\right) + \operatorname{KL}\left(q(\pi_l) || p(\pi_l)\right),$$
$$\operatorname{KL}\left(q(\pi_l) || p(\pi_l)\right) = \frac{a_l - c/L}{a_l} \left(-\gamma - \Psi(b_l) - \frac{1}{b_l}\right) + \log \frac{a_l b_l}{c/L} - \frac{b_l - 1}{b_l}$$

 $\gamma = \mbox{Euler-Mascheroni}$ constant, $\Psi(\cdot) = \mbox{digamma}$ function

Optimization of learnable GDC

- Masks are discrete random variables \Rightarrow reparametrization trick cannot be used
 - Solution 1: use concrete relaxation of Bernoulli

$$\tilde{z}_e^{(l)} = \operatorname{sigmoid}\left(\frac{1}{t}\log(\frac{\pi_l}{1-\pi_l}) + \log(\frac{u}{1-u})\right)$$

t =temperature, u =sample from Unif[0, 1]

- Solution 2: Augment-REINFORCE-Merge (ARM) gradient estimates
 - · Direct optimization of variational parameters
 - · Variational loss is unbiased and has low variance
 - More accurate gradient estimate
 - · Slightly higher computational complexity

Method	Cora		Citeseer	
	2 layers	4 layers	2 layers	4 layers
GCN-DO	80.98	78.24	70.44	64.38
GCN-DE	78.36	73.40	70.52	57.14
GCN-DO-DE	80.58	79.20	70.74	64.84
GCN-BBDE	81.58	80.42	71.46	68.58
GCN-BBGDC	81.80	82.20	71.72	70.00

- ► Learning drop rates improves accuracy
 - More substantial in deeper GCNs
- BBGDC alleviates over-smoothing
 - Specially in deeper GCNs

Method	Cora (4 layers)	Citeseer (4 layers)
GCN-BDE-ARM	79.95	67.90 69.43
GCN-BBGDC-ARM	82.40	70.25

- Beta-Bernoulli better than Bernoulli
 - Due to sparsity imposed by BB
- Direct optimization better than concrete
 - Due to bias in concrete relaxation

Uncertainty quantification

- Patch Accuracy vs Patch Uncertainty (on Cora dataset)
 - ▶ $PAvPU = (n_{ac} + n_{iu})/(n_{ac} + n_{au} + n_{ic} + n_{iu})$
 - ► Higher PAvPU ⇒ certain predictions are accurate & inaccurate predictions are uncertain

Over-smoothing and over-fitting (Cora)

- $\mathrm{TV}(\mathbf{x}) = \|\mathbf{x} (1/|\lambda_{max}|)\mathbf{A}\mathbf{x}\|_2^2$
 - ► Low TV ⇒ most probably over-smoothing occurred

- Over-fitting occurs in deep models
- Over-smoothing intensifies in deeper models

Thanks!

armanihm@tamu.edu https://github.com/armanihm/GDC