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GCN limitations TEXAS A&SM

* Over-smoothing
» due to the nature of low-pass filtering of GCNs
» training accuracy can drop with the number of layers, in
even shallow networks

* No uncertainty quantification

» due to deterministic modeling
» lack of Bayesian interpretation

Accuracy

* Existing stochastic regularization and reduction
techniques

DropOut, DropEdge, node sampling, random walk

not very successful in alleviating over-smoothing

no Bayesian approximation interpretation

difficulty in hand-tuning of hyper-parameters
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Graph DropConnect (GDC); overview TEXAS A&M

UNIVERSIT Y.

We propose GDC, a unified framework for stochastic regularization and reduction:
* generalization of existing GCN regularization methods
¢ enabling natural Bayesian interpretation and prediction with uncertainty quantification
e |earnable drop rates

» drop rates and masks are modeled as beta and Bernoulli random variables
» inferring drop rates with variational inference, coupled with GCN training:

» approximate optimization with concrete relaxation
« direct optimization using Augment-REINFORCE-Merge (ARM)
* better regularization for GCNs by alleviating over-smoothing
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Review; GCN TEXAS A&SM

A = adjacency matrix
9 = normalizing operator

HHD) = & (‘)"t(A) HO W(l)) W = weight matrix
H® = hidden layer [
« Connections are localized o = activation function
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Review; GCN, contd.

Layer [ Layer+1

E

ny l ny
@

o
SF

ny

hba
n3 ng

=
&
8

)
EF

N
&=
3

' 11
e, haz

TEXAS A&M

UNIVERSIT Y.

A = adjacency matrix

9 = normalizing operator
W = weight matrix

H® = hidden layer I

o = activation function
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Review; DropOut
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A = adjacency matrix

91 = normalizing operator
W = weight matrix

H® = hidden layer I

Z(® = Bernoulli mask, layer [

o = activation function
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Review; DropEdge
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A = adjacency matrix
91 = normalizing operator
W = weight matrix
H® = hidden layer I

Z(® = Bernoulli mask, layer [
o = activation function
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Proposed method; GDC
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A = adjacency matrix

91 = normalizing operator
W = weight matrix

H® = hidden layer [

ZE? = Bernoulli mask, layer [
1 = # of features, layer [

o = activation function
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GDC as a Bayesian approximation TEXAS A&M

UNIVERSIT Y.

* Bayesian neural network (BNN):
» Weights are random variables
* Graph DropConnect: randomness in adjacency matrix

» How to transform randomness from adjacency to weights?

» How to choose prior and posterior such that BNN loss is equal to GDC loss?

L
1 .
Lepc = ] E E(ys, 5:) + A E W3
€O =1

O = set of nodes with observed labels
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GDC as a Bayesian approximation, contd. TEXAS A&M

UNIVERSIT Y.

¢ For brevity, assume Zflj) are the same for j’s & rewrite GDC equation for each node

¢ Distribution over masks: zgil ~ Ber(m)

=h*+) = O’(l(

hg) diag(zq(fg)) W(l))
ueN (v)U{v}
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GDC as a Bayesian approximation, contd. TEXAS A&M
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¢ For brevity, assume Zflj) are the same for j’s & rewrite GDC equation for each node

¢ Distribution over masks: zﬁg ~ Ber(m)

SoRH) = 0(1( 3 hg>diag<zgg>)w<l>)

Co weN (v)U{v}

1 1
= 0o (Cv hy) (diag(z},)) W )) =0 ( E h;, WW)

v ueN (v)U{v}
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GDC as a Bayesian approximation, contd. TEXAS A&M
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¢ For brevity, assume Zflj) are the same for j’s & rewrite GDC equation for each node

¢ Distribution over masks: zq(,lg ~ Ber(m)

SoRH) = 0(1( 3 hg>diag<zgg>)w<l>)

Co weN (v)U{v}

Cy

- 0(1 > <diag<zs,az>w<f>>)a(1 > hspwgaz)

ueN (v)U{v} Y ueN (v)U{v}
, e ) 1w® wbT
* Discrete prior distribution: p(Wyy) ox e2 VWou Wou
* Posterior distribution: 4o, W) = m s(WS — 0) + (1 — m) s(WH — MO)

June, 2020, ICML, Bayesian Graph Neural Networks with Adaptive Connection Sampling 10/18



Variational inference for GDC TEXAS A&M

UNIVERSIT Y.

* Loss function:
Ey((ww, 2035 ) [10gP(Yo|X> {w®, ZO}M ) } ZKL< 9, 20) || p(w?, Zm))

Y, = available labels for the observed nodes
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Variational inference for GDC TEXAS A&M

UNIVERSIT Y.

¢ Loss function:
Ey((ww, 2035 ) [10gP(Yo|X7 {w®, ZO})) } ZKL< ©, 20| p(w®, Zm))
Y, = available labels for the observed nodes

» KL divergence: .
£

KL (g(w®, 20) || e, 20)) oc ELL =T gz gy (0 3 KL (el el

‘H(m;) = Bernoulli entropy & = set of edges + self-loops
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Variational inference for GDC TEXAS A&M
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¢ Loss function:
Ey((ww, 2035 ) [10gP(Yo|X, {w®, ZO})) } ZKL ( ), Z20) || p(w®, Zm))
Y, = available labels for the observed nodes

» KL divergence: .
£
W 70 W 70y o ELE ™)
KL (q(w®,20) || p(w®, 2%)) oc =R IM® B3 m+ZKL( ) llp(z))
‘H(m;) = Bernoulli entropy & = set of edges + self-loops

* For fixed m;’s, a GCN with GDC & ¢, norm regularizer approximates a Bayesian NN!

Corollary

Any graph neural network with random walk sampling, such as GraphSAGE, is an approximation
of a Bayesian graph neural network as long as outputs are calculated using Monte-Carlo sampling.
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Learnable GDC TEXAS A&M
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* High sparsity is required to achieve good performance [Rong et. al., 2019]
» We impose a beta-Bernoulli prior to the binary random masks

* Assumption: drop masks are independent across features
» Following equations are for f; =1

¢ Prior distribution:

2 ~ Bernoulli(m), m ~ Beta(c/L, ¢(L —1)/L)

e

c = constant

* Posterior distribution (Kumaraswamy distribution):

€]
Hq O | 1) g(mp); q(m;a,by) = albﬂrfl_l(l — mp)br—t

a;>0,b>0= vanatlonal parameters
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Learnable GDC, contd.
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¢ |Loss function:

Eq({w(l),Z(U}lL:l) logP(Yo | X7 {w(l)7 Z(l)}l[/:l)}

El(1—m
B2 v

€]

- ZKL( 20), m) | (2", m))
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Learnable GDC, contd. TEXAS A&M
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¢ Loss function:
EI(1—m
B, (o0, 203y [108P( | X, {0, 20}y)] + ELOZT) e
€]

- ZKL( 20), m) | (2", m))

» KL divergence:

€]
KL (CJ(Z ) || p(Z ) ZKL( O | m) | p(z (l)|771))+KL(CI(7T1)HP(7TZ)),
KL(CJ(M)I!p(m))Z_alC/L< =00 - ) gt

~ = Euler-Mascheroni constant, ¥(-) = digamma function
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Optimization of learnable GDC TEXAS A&M

UNIVERSIT Y.

e Masks are discrete random variables = reparametrization trick cannot be used
» Solution 1: use concrete relaxation of Bernoulli
—)
1—u

» Solution 2: Augment-REINFORCE-Merge (ARM) gradient estimates
« Direct optimization of variational parameters
« Variational loss is unbiased and has low variance
« More accurate gradient estimate
« Slightly higher computational complexity

T
1—m

30 = sigmoid <1log( ) + log(

t = temperature, u = sample from Unif[0, 1]
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Semi-supervised node classification

TEXAS A&M

UNIVERSIT Y.

Method Cora Citeseer

2 layers 4 layers 2 layers 4 layers
GCN-DO 80.98 78.24 70.44 64.38
GCN-DE 78.36 73.40 70.52 57.14
GCN-DO-DE 80.58 79.20 70.74 64.84
GCN-BBDE 81.58 80.42 71.46 68.58
GCN-BBGDC | 81.80 82.20 71.72 70.00

Method | Cora (4 layers) Citeseer (4 layers)
GCN-BDE-ARM 79.95 67.90
GCN-BBDE-ARM 81.78 69.43
GCN-BBGDC-ARM 82.40 70.25

» Learning drop rates improves accuracy
» More substantial in deeper GCNs
» BBGDC alleviates over-smoothing
» Specially in deeper GCNs

» Beta-Bernoulli better than Bernoulli
» Due to sparsity imposed by BB

» Direct optimization better than concrete
» Due to bias in concrete relaxation
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Uncertainty quantification TEXAS A&M
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* Patch Accuracy vs Patch Uncertainty (on Cora dataset)

» PAVPU = (nac e niu)/(nac + Ngy + Nic + nzu)
» Higher PAvPU = certain predictions are accurate & inaccurate predictions are
uncertain

—— GCN-BBGDC
GCN-DO
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Over-smoothing and over-fitting (Cora) TEXAS A&M

UNIVERSIT Y.

* TV(x) = ||x — (1/|Mmaz|)A x||3 ¢ Qver-fitting occurs in deep models
» Low TV = most probably * Over-smoothing intensifies in deeper
over-smoothing occurred models
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Thanks!

armanihm@tamu.edu
https://github.com/armanihm/GDC
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